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ABSTRACT

Water quality monitoring in sewer networksmainsa technical challenge even though water pollutdod control are
high prioritiessincedecadesCurrent water qualitymonitoring usually analyzssample in laboratories, allowing only
sporadic measurements, wsesimmersd sensorsn the wastewateteadng to clogging andsensor foulingesultingin
expeng due to intensivenaintenanceBoth techniques thaihave serious limitations.

Previous research showdwtUV-Vis reflectancespectrometrgan be used foron-contact monitoring ofurbidity (TUR)
and ChemicaDxygenDemand (COD)which aretwo key water qualityindicators Although spectrometer achievdgh
spectral resolution their limited spatial field of view is problemétichighly inhomogeneousurfacesas is the case
wastewater

In this study, we obtaibeyondstateof-art measurement accuracieg combining machine learning¢hniques with
increased spatial fieldf-view Multi-Spectral Imaging (MSlwhilst substantiallyreduéng the spectral resolutionNe
designed ad built adedicatedsetup with a monochromatic camenad anactive illuminationof thirteen LEDscovering
thespectrum range of 26000 nm.We acquired and calibratethta oni27 samples with different concentrations of TUR
and COD Machine learningegression models were trained and evaluated witbxtiactedspectra. We testdatie Partial
Least Square (PLSBuyport Vector Machine (SVM) and Random Forest (RF)S regressiomperformed best with
excellentcorrelation coefficients (R of the0.99 forTUR and 0.93 foiCOD. We obtained similar results with the SVM
algorithm (R = 0.99 and 0.92)whilst RF had lowescores (R=0.96 and 0.71).
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1. INTRODUCTION

Water pollution is an increasingly serious problem in our sotiétsater quality monitoring in sewer networkemainsa
technical challengdue to the high solid content and aggressive matrix of raw wastewater.

Currently, the assessment of the water quality is performed by taking samples and analyzing them in a reatotg labo

or by using immersive sensors in direct contact with the polluted water. The first solution allows accurate but sporadic and
costly analysisSuch that it cannatapture the high variability of sewer pollution, especially during rain evéihs
immersive solution has the advantage of a much higmerasurementate. Howeversensorsin contact withraw
wastavaterarequickly degradedby grease, fat, and clogging througarticulates, which lead® inaccurate measurement

and sensor failureWeekly maintenance is requiretbr accurate measuremenigich often nears this technique
prohibitively expensive.

An autonomous and contaeiss system would benefit froreal time analysis wittower maintenanceompared tahese
techniquesPrevious research by J. Agustsson étlainonstrated the feasibility of usireflectancespectrometry methods

in the ultraviolet to visible (UWis) spectrum rangér remote and continuous water quality assessniwever, their
solution is not eabji scalable as it relies on a single point measureaategxpensive and complex equipment, e.g. halogen
illumination.

Our approach uses the fact thif-Vis water quality monitoring is a correlatidrased approaciaking it possible to
reducethe spectriaresolution for this applicatiowhilst retaining accuracy. In this work we designed lbuilt just such a
Multi-Spectra Imaging (MS)}ested itgerformance.and showed beyond stabé-art results



As water quality variables, we followed Agustssonlétand also focused on the chemical oxygen demand and turbidity.

The chemical oxygen demand (COD) is a measure of the amount of aremeéredto fully oxidize the organic matter

contained in a sample. COD is therefore an indirect measurement of opgédinieon, expressed in mass of oxygen
consumed over the volume of solution, which in Sl units i©gflg Organic content in wastewater can be measured at

254 nm because many organic compounds absorb UV light at that wavelength and the amount of liggd ahsdoe

used to calculate the concentration of the organic compounds in the wastdwergsrwe used a 1000 mg/OCOD stock

solution. Turbidity is a measure of the relative clearness of a Ifgldpending on the amount of solids in suspension in

the sample, light rays are reflected and attenuated. Therefore, the higher the number of suspended particles, the higher the
turbidity. The most common method to measure turbidity, is called nephelometry, which measures the backscattered light
with spectroneters. Thus,urbidity is usuallyexpressed in Nephelometric Turbidity Units (NTU)

This paper is set out as followsirst, we describe the experimental setup, then theplefmrationacquisitionprotocol
and theimage processing. Finally, we will evaluate the models: Partial Least Square (PLS), Random Forest (RF) and
Support Vector Machine (SVM).

2. EXPERIMENTAL SETUP

Our setup was a redesign of that used by Aguststsali.Here, we can only give a briefdescriphn, see Pr%ei tner
for more detailsThe camera and illumination are placdubvethe samplesvhich are held ira black nonreflectivecup
(dimensions/volume)seeFigurel. The setup is placed in a dark environment to avoid parasitic aoikamimicing real
conditions in sewersThe camera is fixed 40 cabovethe samplesAt this distancehe sampldill s the field of view of

the cameraa 4Mpxl camera was chasor sufficient spatial resolutiorThe distance between the LEDs and the solution

is fixed andat theas distance to theameraAn image ofthe sample is taken thirteen times, one for esggbctal band.

The data obtained isdata cubevith the dimensions 13 x 2048 x 2046.

40 cm

Black cup

Figurel. Setup used for the acquisition (left) the schema (right) the. .setup
Material

The setup is composed of three main elements: the illumimdtie camera, and thack cupwhich holds thesamples.

The illuminationconsiss of thirteen LEDs mounted on a circular board. Timenochromaticameraf CM2 02 0 -)UV- TR
is sensitive in the ultraiolet to visible (UMVVIS) spectrum rangewhich isthe necessargpectrum rangé& capture the

turbidity (TUR) and Chemical Oxygen Demand (COD). This camera has a rolling shutter and an angle of view of 22
degreesTheFigure2 shows the camera and its quantum efficiency
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Figure2. SCM2020UV-TR camerdleft) andits quantum efficiencyright).

The acquisition system usasustommadeactive illumination composed o# prototype withthirteen LEDs mounted on

a circular boardrigure3 showstheLED spectra with intensity normalized by the exposure timensitiesvere measured

with a spectrometeseeTable 1. Theheoretical peaks show the values described in the datasheets of the E&ibs.

LEDs has a different optical power, and the quantunctieficy of the camera is not lineatherefore, the LEDs are
modulated to balance the intensity throughout the different wavelefkgittsermore, thepatial homogeneity is calibrated
using a white reference to obtdiomogenous illumination for all the ibds.

Table 1.LEDs peak wavelengths in nm

Theoretical peak 250 270 290 310 365 380 400 455 520 590 620 660 700

Measured peak 256 277 293 308 368 386 403 458 530 591 632 656 696

FWHM * 11 112 10 11 10 9 15 14 25 13 12 12 15

* FWHM: full width half max, i.ethe spectralwidth of the signal at 50% of the peak intensity

Theposition of thallumination source is critical to obtathe minimum specular reflection, maximulight homogeneity
and highest diffuse reflectandeor this reasorthe illumination sourcevas placedlirectly under the lens of the camera.
During the experimentshe specular reflectionserenot problematic because théypically only cover a small area of
the total part of the imaggnd can be removed later on using machine vision algorithms
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Figure3. lllumination of the system. (left) Circular board of the LEDs. (right) Spectra of the LEDs, normalized to 1



The properties of theeup should have no impact on the reflectance of the samples and should not interact with the
components of the solutions. We usdaack high-density polyethyleneHDPE) flask whose top has been removed.

The samples are produced usingnstard solutions of TUR and COBifferentconcentratiosare obtained by changing
the solutions ratio and dilutioaddingdeionized watemainly for cost reasons: standard solution of C€x3ts around
60CHF/200mL Different units are used fuantify the TUR concentratidndepending on the methods used to measure
the TUR. We used the Nephelometric Turbidity Unit (NTU). AU Aluminum oxide (Al>Os) solution with a
concentration of approx. 0.3 vol.% is used as TUR standard solution.

To have aetter insight about the TUR, an example of different concentrations of TUR can be founBigtitad.
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Figure4. Examples of TUR for aancentration of 10 to 4000 NTU. Source: DEAL Guyane, 2018

The concentrations of TUR and COD vary widely in the wastewater systems. The ranges of concentrations that can be
found in the sewers and wastewater are- 2500 NTU and 42,000 mg/L respectivgl.

Twenty-seven samples of 400ml with different TUR and C&iDcentrationsvere prepared mostly within the previously
defined range, to represent at best the conditions inside the wastewater siystbidity and COD levels were determined

by the mixing proportions of standard solutions used in each samples. In addition, turbidingasmseadvith. standard
laboratory portable turbidity meter However, further COD @dRRYysis couldn’t

We generated 27 samplesitially ten samplesvere obtained by mixing the COD and turbidity standards under different
proportions. In total, seven different C@UOrbidity ratio were studiedThen eight of those ten samples were diluted
between ae and four times to generate more sampliggire5 gives an overview of the differeata m p domcéngations.
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Figure5. Samples concentrations. The range of the concentrations that could be measured in wastewater is represented by
the rectangle. Each color represemtifferent ration of COD:TUR



Calibration

The system was calibratéd compeng® the variation in the intensities of the LEDs. The intensities of the LEDs are
modified with apulsedwidth modulation(PWM) such that the intensity of the light reflected by the white target is similar

for all the LEDs with a fixed exposure time of 8Qriiiée used a Zenith Lit¥ square target of 500x500 mm with a diffuse
reflectance of 95%. The dark reference is measured by taking an image in a dark environment with no light source. The
acquisition of the references is done for each LED. Moreover, theebrafgthe dark reference are normalized with the
exposure time-or example, if the image has been acquired with an exposure of 250ms and the white reference with 80ms,

80
the image would be normalized by dividing the intensity \2501 The final reflectance is computed using #ugiation
(1).
(Iimuge,tl - Id.urk,tl) « (t2/t1)

I —
Iwhite,tz - Idark,t?. (1)

calib —

Where Lain is the image obtained after calibratiomadeithe original image acquired with an exposure timene | the
white reference acquired with an exposure timeafthe dark reference acquired with an exposure timgeand ¢ are
the two exposure times used for the acquisition.

3. DATA ACQUISITION
Protocol and final dataset

Dataacquisitionwasthe same for the tweniseven samplesach acquisition was performed in und® minutes, to
prevent any degradation of the samfllee samples araccording torable 2 TUR is measured with the turbidimettre
concentration of COD is assumed to correspond to the theoretical values of the mix. 400ml of the solution is poured int
the black cup and placed under the camera. Between five and twelve acquigitieperformed with different exposure
timeseach set of acquisitions is composed of 13 images, one for each LED. The cup and all the tostsersesed
between all theauisitions to avoid any contamination of the previous sample. The result of an acquisititataisabe

(3D array)with the dimension 13 x 2048 x 204dnally, the experimental test led to a dataset of 225 data cubes, i.e. multi
spectral images, and mesponding ground truth concentrations for TUR and CBiQure 6 shows the images for a
solution with high TUR(917 NTU) and low COD (50 mgO2/l), befoadibration.One can see the specular reflection of
the LED at the center, and at the rim. Little diffusion is observed in the deep UV range (22@0mm) and in the near
infrared (700nm).



Table 2. Sample concentrations.

Solution Ratio COD TUR CODStand TURStand Water
[mg/L] [NTU] [ml] [ml] [ml]

1 101 900 90 360 36 4
2 31 750 250 300 100 0
3 500 166.67 200 66.67 133.33
4 375 125 150 50 200
5 240 80 96 32 272
6 1.1 500 500 200 200 0
7 333.33 333.33 133.33 133.33 133.33
8 250 250 100 100 200
9 150 150 60 60 280
10 100 100 40 40 320
11 75 75 30 30 340
12 4:10 240 600 96 240 64
13 160 400 64 160 176
14 120 300 48 120 232
15 80 200 32 80 288
16 53.33 133.33 21.33 53.33 325.33
17 32 80 12.8 32 3552
18 14:75 140 750 56 300 44
19 93.33 500 37.33 200 162.67
20 70 375 28 150 222
21 46.67 250 18.67 100 281.33
22 35 187.5 14 75 311
23 1.9 100 900 40 360 0
24 66.67 600 26.67 240 133.33
25 50 450 20 180 200
26 1:19 50 950 20 380 0
27 33.33 633.33 13.33 253.33 133.33

250 nm 270 nm 290 nm 310 nm 365 nm 380 nm 400 nm

B 0 3 3 £ £
a

Figure6. Example of images obtained during the acquisition, for a high TUR salution



Image pre-processing

After the calibration the image is smoothed with a Gaussian filter, sigma set Biglwa 7 showsthe intensity at the
yellow line, beforethe calibration Figure 7a and7c), andafterthe calibrationFigure 7b and7d) for the concentratios
100 mg/l and 854 NTU, and for the illumination at 620 nm. We set at zero the regions outsidgathef interestROI)
to improve the visualization of the calibration result on the reflectance

Figure?. Intensity of thepixels before and after the calibration for a concentration of 100 mg/l and 854 NTU for an
illumination at 620 nmLeft from right: (a) Image of the solution before the calibration. (b)Image of the solution after the
calibration. (c) Intensity of the pix@before the calibration. (d) Intensity of the pixels after the calibration

A mask isgenerated to definthe ROI corresponding to light reflection over the sample surface. In particular, the mask
was designed to exclude the background and areas wittspégtular reflections (e.gm of the cupreflections of the
surface, etc.)

Although thebottom of thecup reflects onlylittle light, this effect is considered as noise dad not beemompensated
for during the analysif\lso, the cughas assmall stdilizing diagonal bulge at its bottorwhich presents a nehomogenous
background reflection of theottom surface for low TURseeFigure8). Therefore, thisegion is also removed from the
ROI (see Mask irrigure8). Each individual speculaeflectionis segmented using the flood fill algorithm with manually
selected seedThe union ofthe segmented specularities is then removed from theR§ire8 shows the final ROI and
the images of a single set with the mask applied to therapecular reflection can be observed in the.ROI

Finally, the agglomeration oparticles of alumindrom the TUR solutioncreated highly reflective floating particles
therefore, they were removed from the ROheyweredetected with blob detectian eahimage.

Mask 250 nm 270 nm 290 nm 310 nm 365 nm 380 nm

Srrrrry

400 nm 455 nm 520 nm 590 nm 620 nm 660 nm 700 nm

Figure8. Mask that defines the region on interest, i.e., the region of the solution. It is shared for all the sets of images. The
mask removes all the specutaflectionsof the images, as well of the surroundings, such as the rim of the cup and the
background




4. ML MODEL

Spectra creation

The reflectance of the sample is constant throughout the whole ROI, meaning that there is few spatial information within
the image. Thafore, there is no reason to directly use the images for the model to predict the conceriffaijoseude
spectrum of the reflectance is created by using the intensity of the pixels for a giveffham#ak wavelength of the

LED is used as the wavelgth value for the pseuegpectra.

Seven points ararbitrary defined within the ROto reduce the amount of data fed to the algorithm. This eventually
increase speed of computation. The distribution of the seven points is desciimpd@® (up left). To reduce the chance

of selecting an outlier pixel, a region of 7x7 is selected around the point and the median of the intensity is kept. The
spectrum of the point igeated from those intensities computed for the thirteen images of tlae agtsult, seven spectra

are obtained for each set. TRiggure 9 (down) show the reflectare spectra of the twengeven samples, obtained by
taking the mean of all the spectra for each sample.

An outlier detection is alsperformed on all the spectra for a same concentration using the median and median absolute
deviation (MAD), see equation X2The spectrum is designated as outlier if the difference between its intensity and the
median of the one of all spectra is higher than 10*MAD for at least one wavelength. Usually, the threshold would be set
at 3*MAD but setting it at 20*MAD allows a higir variance in the values of the spectra and should prevent to a certain
extent the models to overfithe Figure9 (up right) shows the remaining spectra (full line) and the removed ones (dotted
lines) for the 100ngGy/I COD andturbidity of 94 NTU.

mad = median(|spectrum — median(spectra)l) @)
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Figure9. Distribution of the seven locations of the spectra extraétionne sampléup left), the outlier detection for one
concentratior{up righ) and thereflectance spectra dfofthe 27 concentrationsldwn)



Data

The dataset is made up of 27 groups of concentratsank group has between 30 and 84 elements afteaitliers were
removed. This makes a total of 144dectra out of the 1491 original dataseith concentratios betweer82 and 900
mgO2/l for COD and 67 917 NTU for TUR.Figure 10 shows the effect of variation on individual elements, COD and
TUR. The effect of TUR seems to involve mainly the glahtdnsity of the reflectance (see righthile COD (see left)
has an fect in the lower wavelengths, 25@10 nm, mainly in the slope between the intensity at 365 and 310 nm.

10 Reflectance Spectra 10 Reflectance Spectra
—— 70.0 mgA, 301.0 NTU —— 32.0 mgA, 68.0 NTU
—— 333.33 mgh, 295.0 NTU = 33.33mgA, 531.0 NTU
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Figure10. Samples with only one component that strongly varies, usasstsshe effect of individual elements on the
spectrum. left) The spectrum of samples with similar COD concentration but different G@bt) (The spectrum of
sample with similar COD but different level of COD

As expectedihe reflectance and the concentrations of COD and &témhighly correlated ith one anothe(Figurel11).
The TUR isbestcorrelated with the intensity of the reflectance in the higher wavelengths {865hm) with a correlation
value above 0.99. On the other hand, the COD concentration doesn't seem to have any correlation with the raflectance.
Agustsson et &, we obsrveda linear relationship between tlOD andthe logarithm of the reflectandetensities,
Figure 11 (middle) confirm this idea, it shows that the COD concentratias a strong negative correlation with the
intensities inower wavelength, 25290, with correlation coefficients frord.52 t0-0.68. Furthermore, the COD seems
to be defined by the drop between the intensity at 365 nm and the one at 310 nm. Théatomelp of this feature
(Figure 11 right) shows that the COD and the subtraction of the logarithm of the intensity at 365 nm with the one at 310
nm are indeed cor@ed with a coefficient of 0.72
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Regression models

Independently of the regression algorithm used, we tested three main types of models:cautpuiltmodel, two
independent singleutput models, and two separated single output models using the TUR prediction as a feature to train
the COD madlel. TheFigure12 shows the training and testing methods used for those three types.

We trained the models with different types of inputs extracted from the TUR@bddata. TUR models are tested with

the followinginputs: the intensity of the whole spectrum, the intensity within thevisite and visible range (365700

nm), the mean of the intensity at 25@00 nm, and the mean of the intensity at 365 to 700 nm. The chemical demand
oxygen model is tested withe intensity of the spectrum, the intensity in the UV range, the logarithmic of the two previous
inputs, the mean of the logarithmic inputs, and the subtraction of the intensity at 365 nm with the one at 310 nm. The TUR
prediction can be added as a featfor each of the inputs cited previously. The comparison is done always using the same
TUR model, the one with the highest &ore.

If the model were randomly separated within a train and test set, the results would be biased because another spectrum of
the same concentration would have probably been used for the training of the wiadewould lead to overly good

results. Therefore, each group of samples must be considered as otieedatining and testing are performed using the
leaveoneout ciossvalidation. The dataset is separated into twesetyen groups corresponding to the concentrations. The
following method is done for each group. The model, either the-awitiut, the TUR, or the COD one is trained with the
twenty-six other groupsthen we predict the concentrations of all the elements in the remaining group. Those predictions

are kept to evaluate the model when all the concentrations are predicted.

Three classical machine learning algorithms are trained and evaluated for the medasoféheeTfUR and COD: the
Partial Least Square Regressianpopular method i€hemometricsthe Support Vector Machine Regression, and the
Random Forest Regression
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Figure12 Training of (up left) two single outputs (ujght) two singleoutput models using the TUR prediction to train the
COD model (down) the mutthutput model, and testing with the crasdidation leaveoneout technique

Results

The best PLS modébr the TUR is obtained with the intensity of the spgah the range 365700 nm as inputs, with 1
component as parameter. The model has a scor&=di.B9 with a mean absolute error of 15.48 and a mean square error
of 490.48. The best model for the COD model using the TUR prediction is the one usioggattithinic of the intensity

of the whole spectra with 14 components. The model has a scofe=dd.B3 with a mean absolute error of 40.10 and a
mean square error of 3349.91. The best model for the COD that doesn't use the TUR prediction as a fieasameés t
oneasthe TUR prediction. It has a score of R0.93 with a mean absolute error of 39.44 and a mean square error of
3243.65.The difference between the two models is negligiBlgure 13 shows the prediction obtained with the leave
oneout method COD model tends to underestimate the concentrations for high COD levels.



Prediction of the tur concentrations Prediction of the cod concentrations.
For the intensity of the spectra (365-700 nm}), with 1 component For the log intensity of the spectra (250-700 nm), with 14 components

800
800

600

2
S

400

=]
(=]
COD prediction [mg/l]

TUR prediction [NTU]

200

200

200 400 600 800 0 200 400 600 800
TUR[NTU] COD [mg/1]

Figurel13. Predictions of the PLS model$eff) The TURmodel with the intensity in the range 36800 nm as input and 1
component(right) The COD model, with the logarithmic intensity of the whole spectra without using the tur prediction as

feature and with 4 components

The best SVM moddbr the turbidity shown inFigure 14, is the model using the intensities at the wavelengths 365 to

700 nm with a penalty parameter of 0.14. The model has a scofe=0d.B9 with anean absolute error of 15.31 and a

mean square error of 518.27. The best COD model is the one with the logarithmic intensities in the band 250 to 700 nm
not using the predictions of the turbidity, and a penalty set at 10,000. The model has a séord @2Rvith a mean
absolute error of 35.75 and a mean square error of 3540.35.

Prediction of the tur concentrations Prediction of the cod concentrations.
For the intensity of the spectra (365-700 nm), with C =0.14 For the log intensity of the spectra (250-700 nm), with C = 10000
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Figurel14. Prediction of the best SVM model$eft) The turbidity model with the intensity in the range 3&® nm as input
andC=0.14(right) The COD model, with the logarithm of the intensities at the rang&@8Mmwith the TUR prediction

with the parameter set 40,000.

RandomForest (RF)s popular for the prediction of regression probleitis an ensemble algorithm asricludesmultiple
decision trees. When using the RF for regression, there are two important parameters to gptimizember of features

to consider whn looking for the best split arig the criterion to measure the quality of a split. The optimization is
performed with a grid search using the leaveout cross validation to compute the score. The parameters leading to the
highest R score is kept athe optimal parameters. The values of the parameters are the following:



. max_features ['sqgrt', 'log2', 0.001, 0.1, 0.33, 0.7, 1, ‘auto’]

. criterion = ['squared_error', ‘absolute_error', ‘poisson’]

Where sqrt = 3.6, log2 = 1.1 and auto is the numbfgatfires. The number of trees is set at 10 because the dataset is quite

small.

The best model for the turbidity, shownFigurel5, is the model using the intensitiasthe wavelengths 365 to 700 nm,
with the parametersnax_features sqrt anctriterion = poisson. The model has a score £R.97 with a mean absolute
error of 23.44 and a mean square error of 1171.70. The best COD model is the one with thesntetsitiband 250 to
310 nm not using the predictions of the turbidity. The parametersrigggon = poissonmax_features auto = 4. The
model has a score ofR 0.71 with a mean absolute error of 82.94 and a mean square error of 13107.67.

Random foest algorithm support mututput regression, however, the results with either the intensity or the logarithm of
the intensity as inputs are lower than the independent models. We obtain a score for the first model of 0.86 and 0.34 for
the turbidity and CO, and a score of 0.86 and 0.43 for the second model
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Figurel5. Prediction of the best RF models. (I€ft)e turbidity model with the intensity in the range 3&® nm as input
and max features ¥and criterion = poissoifright) The COD model, with the intensities at the range-260nm.

Table 3summarizes the best results of the three algorithms andehieys result obtained in the Agustsson gtaaticle.
Thisdemonstratethat we were able to obtain better results, thase obtained with more classical spectrometsgnsor

Table 3.Results of the different models

Concentrations Model R?
TUR Agustsson 0.95
PLS 0.99
SVM 0.99
RF 0.97
COD Agustsson 0.69
PLS 0.93
SVM 0.92
RF 0.71

MAE

15.48
15.31
24.08

39.44
35.75
85.94

MSE

490.48
518.27
1218.13

3243.65
3540.35
13141.6




5. CONCLUSION

Wastewater quality monitoring iraw wastewater, and especiatlgwers remainsa challenging topic. Current soluti®n
involve complex infrastructures, and/or costly devices that requires significant maintenance. Our apupoaos
accuracies in theecent noncontact water quality measurements usimgtispectral imaging (MSI) in the U¥is range
andactive illumination based on LED technologgt lower cost, angirtually maintenancéree.

In this article, we preseriie detailed experimental methodad data analysis pipeline we applied to successfully predict
turbidity (TUR) and Chemical Oxygen Demand (CQdd)synthetic wastewater sampiethe range of 7950 NTUand
32-900 mg@D,/I. This technology shows promising results witthaan absolute errof tess than 10%nd highR? of 0.93

for TUR and0.99for COD. Regarding data analysis, our results suggest thatity@ort vector machine algorithaelivers
similar resultswhilst random forest regression is the least efficidiitese resultare extremelyencouragingas they
represent a first step into n@ontact water monitoringdowever, weusedsamplessyntheticwastewatein a controlled
environmentand with comparably few sample3herefore, he next step is to colleet comprehensiveatase of real
wastewater,from different sites, which should better capture the-wamld variability. Challenges from different
monitoring geometries, i.e. changing water levels, and lighting conditidinalso need to be addresseBinally, it will
berequired toadapt and test the algorithras well as data transmission and power management fotdamgoperation

in remote monitoring location® allow an accurate 0T real time wastewater measurement to improve management of
these systems.
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